
Design	Strategies	1:	Combine	
Simpler	Functions

CS	5010	Program	Design	Paradigms	
“Bootcamp”
Lesson	1.7

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.



Learning	Objectives

• At	the	end	of	this	lesson,	the	student	should	
be	able	to	define	short	functions	by	
composing	existing	functions.

2



Introduction

• In	this	lesson,	you	will	learn	about	Steps	4	and	
5	of	the	design	recipe:		Design	Strategies	and	
Function	Definitions.

• We	will	start	with	the	simplest	design	strategy:	
Combine	Simpler	Functions

3



Programs	are	sets	of	Functions

• We	organize	our	programs	as	sets	of	functions.
• A	function	takes	an	argument	(or	arguments)	and	
returns	a	result.

• The	contract	says	what	kind	of	data	the	argument	
and	result	are.

• Purpose	statement	describes	how	the	result	
depends	on	the	argument.

• The	design	strategy	is	a	short	description	of	how	
to	get	from	the	purpose	statement	to	the	code.

4



Typical	Program	Design	Strategies

Design	Strategies
1.	Combine simpler	functions
2. Use	template	for	<data	def>	on	<vble>
3.	Divide	into	cases	on	<condition>
4.	Use	HOF	<mapfn>	on	<vble>
5.	Call	a	more	general	function

5



Let's	see	where	we	are

The	Function	 Design	Recipe

1.	Data	Design

2.	Contract	and	Purpose	
Statement

3. Examples	and	Tests

4.	Design	Strategy

5.	Function	Definition

6.	Program Review

6

The	Six	Principles	of	this	course

1.	Programming	is	a	People	Discipline

2.	Represent	Information	as	Data;	Interpret	Data	as	
Information

3. Programs	should	consist	of	functions	and	
methods	that	consume	and	produce	values

4.	Design	Functions Systematically

5.	Design	Systems	Iteratively

6.	Pass	values	when	you	can,	share	state	only	when	
you	must.

Programs	are	sets	of	Functions

Design	Strategies

1.	Combine simpler	functions

2. Use	template	for	<data	def>	
on	<vble>

3.	Divide	into	cases	on	
<condition>

4.	Use	HOF	<mapfn>	on	<vble>

5.	Call	a	more	general	function



Design	Strategy	#1:	Combine	Simpler	
Functions

• Many	times	the	desired	function	can	be	
described	as	a	combination	of	simpler	
functions.

• This	is	what	we	did	for	f2c,	where	the	simpler	
computations	were	just	arithmetic.

7



Demo:	velocity.rkt
• On	the	next	slide,	you’ll	see	a	video	of	me	defining	a	
function	using	the	strategy	“Combine	Simpler	
Functions”.

• Observe	how	I	followed	 the	recipe:		the	contract,	
purpose	statement,	examples	and	tests	were	written	
before the	function	definition.

• Oops:
– The	contract	should	have	said	Real,	not	Number.
– The	strategy	should	be	“combine	simpler	functions”	(we	
used	to	call	this	“function	composition”	but	we	decided	to	
change	it	to	a	less	fancy	name.	J)

• The	file	is	01-4-velocity.rkt	.

8



Demo:	velocity.rkt

9
Note:	you	should	never	use	Number	when	you	mean	Integer,	
NonNegInt,	or	Real.		Here	I	should	have	used	Real.

YouTube	link



Another	example:	area-of-ring

• Sometimes	the	simpler	functions	may	include	
ones	you	write	yourself.

• Here’s	an	example:	area-of-ring,	which	calls	
area-of-circle.

• Both	of	these	are	defined	by	combining	
simpler	functions.

10



Video:	area-of-ring

11I	should	have	used	Real	(or	NonNegReal)	here,	too.YouTube	link



What	can	you	write	in	a	combination	
of	simpler	functions?

• Remember	that	the	goal	is	to	write	beautiful	programs.
• You	want	your	reader	to	understand	what	you’re	doing	
immediately.

• So	just	keep	it	simple.
• We	won’t	have	formal	rules	about	this,	but:
• If	the	TA	needs	you	to	explain	it,	it’s	not	simple	enough.
• Anything	with	an	if is	probably	not	simple	enough.	
– If	you	need	an	if,	that’s	a	sign	that	you’re	using	a	fancier	
design	strategy.		We’ll	talk	about	these	very	soon.

12



Keep	it	short!

• “Combining	simpler	functions”	is	for	very	
short	definitions	only.

• If	you’re	writing	something	complicated,	that	
means	one	of	two	things:
– You’re	really	using	some	more	powerful	design	
strategy	(to	be	discussed)

– Your	function	needs	to	be	split	into	simpler	parts.
• If	you	have	complicated	stuff	in	your	function	you	must	
have	put	it	there	for	a	reason.		Turn	it	into	a	separate	
function	so	you	can	explain	and	test	it.

13



When	do	you	need	to	introduce	new	
functions?

• If	a	function	has	pieces	that	can	be	given	
meaningful	contracts	and	purpose	statements,	
then	break	it	up	and	use	function	
composition.

• Then	apply	the	design	recipe	to	design	the	
pieces.

14



Bad	Example
;; ball-after-tick : Ball -> Ball
;; strategy: use template for Ball
(define (ball-after-tick b)

(if
(and 

(<= YUP (where b) YLO)
(or (<= (ball-x b) XWALL

(+ (ball-x b)
(ball-dx b)))

(>= (ball-x b) XWALL
(+ (ball-x b)

(ball-dx b)))))
(make-ball
(- (* 2 XWALL)

(ball-x (straight b 1.)))
(ball-y (straight b 1.))
(- (ball-dx (straight b 1.)))
(ball-dy (straight b 1.)))

(straight b 1.)))

;; ball-after-tick : Ball -> Ball
;; strategy: combine simpler functions
(define (ball-after-tick b)

(if
(ball-would-hit-wall? b)
(ball-after-bounce b)
(ball-after-straight-travel b)))

Here’s	a	pair	of	examples.	
Which	do	you	think	is	clearer?		
Which	looks	easier	to	debug?	
Which	would	you	like	to	have	
to	defend	in	front	of	a	TA?

15



Summary

• In	this	lesson,	you’ve	learned
– How	to	use	Function	Composition	to	write	a	
function	definition.

–When	a	function	definition	needs	to	be	simplified	
by	using	help	functions.

– How	to	use	Cases	to	partition	a	scalar	data	type.

16



Next	Steps

• Study	the	files	
• If	you	have	questions	or	comments	about	this	
lesson,	post	them	on	the	discussion	board.

17


